49 research outputs found

    Statistical Features for Image Retrieval: A Quantitative Comparison

    Get PDF
    In this paper we present a comparison between various statistical descriptors and analyze their goodness in classifying textural images. The chosen statistical descriptors have been proposed by Tamura, Battiato and Haralick. In this work we also test a combination of the three descriptors for texture analysis. The databases used in our study are the well-known Brodatz’s album and DDSM(Heath et al., 1998). The computed features are classified using the Naive Bayes, the RBF, the KNN, the Random Forest and Random Tree models. The results obtained from this study show that we can achieve a high classification accuracy if the descriptors are used all together

    Shape matching by curve modelling and alignment

    Get PDF
    Automatic information retrieval in the eld of shape recognition has been widely covered by many research elds. Various techniques have been developed using different approaches such as intensity-based, modelbased and shape-based methods. Whichever is the way to represent the objects in images, a recognition method should be robust in the presence of scale change, translation and rotation. In this paper we present a new recognition method based on a curve alignment technique, for planar image contours. The method consists of various phases including extracting outlines of images, detecting signicant points and aligning curves. The dominant points can be manually or automatically detected. The matching phase uses the idea of calculating the overlapping indices between shapes as similarity measures. To evaluate the effectiveness of the algorithm, two databases of 216 and 99 images have been used. A performance analysis and comparison is provided by precision-recall curves

    1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

    Full text link
    The 1st^{\text{st}} Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.Comment: MaCVi 2023 was part of WACV 2023. This report (38 pages) discusses the competition as part of MaCV

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Recognition of Shapes by Attributed Skeletal Graphs

    No full text
    In this paper, we propose a framework to address the problem of generic 2-D shape recognition. The aim is mainly on using the potential strength of skeleton of discrete objects in computer vision and pattern recognition where features of objects are needed for classification. We propose to represent the medial axis characteristic points as an attributed skeletal graph to model the shape. The information about the object shape and its topology is totally embedded in them and this allows the comparison of different objects by graph matching algorithms. The experimental results demonstrate the correctness in detecting its characteristic points and in computing a more regular and effective representation for a perceptual indexing. The matching process, based on a revised graduated assignment algorithm, has produced encouraging results, showing the potential of the developed method in a variety of computer vision and pattern recognition domains. The results demonstrate its robustness in the presence of scale, reflection and rotation transformations and prove the ability to handle noise and occlusions

    Diagnostica per immagini: un modello di percezione

    No full text
    Dottorato di ricerca in matematica applicata ed informatica. 6. ciclo. Coordinatore L. M. RicciardiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Attributed Skeletal Graphs for Shape Modelling and Matching

    No full text
    The aim of this paper is mainly on using the potential strength of skeleton of discrete objects in computer vision and pattern recognition. We propose to represent the medial axis characteristic points as an attributed skeletal graph to model the shape. The information about the object shape and its topology is totally embedded in them and this allows the comparison of different objects by graph matching algorithms. The experimental results demonstrate the correctness in detecting its characteristic points and in computing a more regular and effective representation for a perceptual indexing. The matching process, based on a revised graduated assignment algorithm, has produced encouraging results, showing the potential of the developed method in a variety of computer vision and pattern recognition domains. The results demonstrate its robustness in the presence of scale, reflection and rotation transformations and prove the ability to handle noise and occlusions

    Generalized Hough Transform for Shape Matching

    No full text
    In this paper we propose a novel approach towards shape matching for image retrieval. The system takes advantages of generalized Hough transform, as it works well in detecting arbitrary shapes even in the presence of gaps and in handling rotation, scaling and shift variations, and solves the heavy computational aspect by introducing a preliminary automatic selection of the appropriate contour points to consider in the matching phase. The numerical simulations and comparisons have confirmed the effectiveness and the efficiency of the method proposed
    corecore